home *** CD-ROM | disk | FTP | other *** search
- /* Listing 1
- ** bc program to calculate Chebyshef economized polynomial
- ** for evaluation of sin(x) */
- /* use bc -l to get c() and s() functions */
- define t(x) { /* sin(x)/x */
- if(x==0)return(1.); /* derivative of s function */
- return (s(x) / x); /* put function to be fit here */ }
- define b(x) {
- if (x < 0) return (-x);
- return (x); }
- define m(x, y) {
- if (x > y) return (x);
- return (y); }
- n = 22; /* number of Chebyshef terms */
- scale = 40;
- p = a(1.) * 4; /* pi */
- b = p * .5; /* upper end of curve fit interval */
- a = -b; /* lower end of interval */
- /* chebft adapted from Press Flannery et al */
- /* "Numerical Recipes" FORTRAN version */
- for (k = 1; k <= n; ++k) {
- c[k] = 0;
- f[k] = t(c((k - .5) * p / n) * (b - a) * .5 + (b + a) * .5);
- }
- /* because of symmetry, even c[] are 0 */
- for (j = 1; j <= n; j += 2) {
- s = 0;
- q = (j - 1) * p / n;
- for (k = 1; k <= n; ++k) s += c(q * (k - .5)) * f[k];
- (c[j] = 2 / n * s); }
- /* skip even terms, which are 0 */
- for (n = 5; n <= 19; n += 2) {
- /* chebpc */
- for (j = 1; j <= n; ++j) d[j] = e[j] = 0;
- d[1] = c[n];
- for (j = n - 1; j >= 2; --j) {
- for (k = n - j + 1; k >= 2; --k) {
- s = d[k];
- d[k] = d[k - 1] * 2 - e[k];
- e[k] = s; }
- s = d[1];
- d[1] = c[j] - e[1];
- e[1] = s; }
- for (j = n; j >= 2; --j) d[j] = d[j - 1] - e[j];
- d[1] = c[1] * .5 - e[1];
- /* pcshft */
- g = 2 / (b - a);
- for (j = 2; j <= n; ++j) {
- d[j] *= g;
- g *= 2 / (b - a); }
- for (j = 1; j < n; ++j) {
- h = d[n];
- for (k = n - 1; k >= j; --k) {
- h = d[k] - (a + b) * .5 * h;
- d[k] = h; }
- }
- "Chebyshev Sin fit |x|<Pi/2 coefficients"
- " Maximum Rel Error:"
- m(b(c[n + 2]), b(c[2])) / t(b);
- for (i = 1; i <= n; i += 2) d[i];
- }
-